

CM1126B-DAC

带船运模式二合一单节电池保护 IC

精度 ±30%

CM1126B-DAC 内置有高精度电压检测电路和延迟电路,通过检测电池的电压、电流,实现对电池的过充电、过放电、 过电流等保护,适用于单节锂离子/锂聚合物可充电电池的保护电路,更带有船运模式,使小容量电池包满足海运运输及长期 存储需求。

功能特点

1) 高精度 日	已压检测功能
----------	--------

• 过充电保护电压	4.475 V	精度 ±20 mV
• 过充电解除电压	4.275 V	精度 ±50 mV
• 过放电保护电压	2.850 V	精度 ±50 mV
• 过放电解除电压	3.050 V	精度 ±100 mV
• 放电过流检测	0.450 A	精度 ±100 mA
• 短路电流检测	0.850 A	精度 ±150 mA
• 充电过流检测	0.450 A	精度 ±100 mA
2) 内部检测延迟时间		
• 过充电保护延时	1.0 s	精度 ±30%
• 过放电保护延时	64 ms	精度 ±30%
• 放电过流保护延时	10 ms	精度 ±30%

10 ms

• 充电过流保护延时 3) 充电器检测及负载检测功能

4) 向 0V 电池充电	允许
5) 休眠功能	有
6) 船运模式	支持
7) 放电过流状态的解除条件	断开负载
8) 放电过流状态的解除电压	V_{RIOV}

9) 低电流消耗

• 工作时	0.6 μA (典型值)	(Ta = +25°C)
• 休眠时	10 nA (最大值)	(Ta = +25°C)
) 内部功率 N-MOSFET 导通阻抗 R _{DS(ON)}	65 mΩ	

10) 内部功率 N-MOSFET 导通阻抗 R_{DS(ON)}

11) RoHS、无铅、无卤素

■ 应用领域

- 智能穿戴设备
- TWS

封装

• DFN1x1-4L

■ 系统功能框图

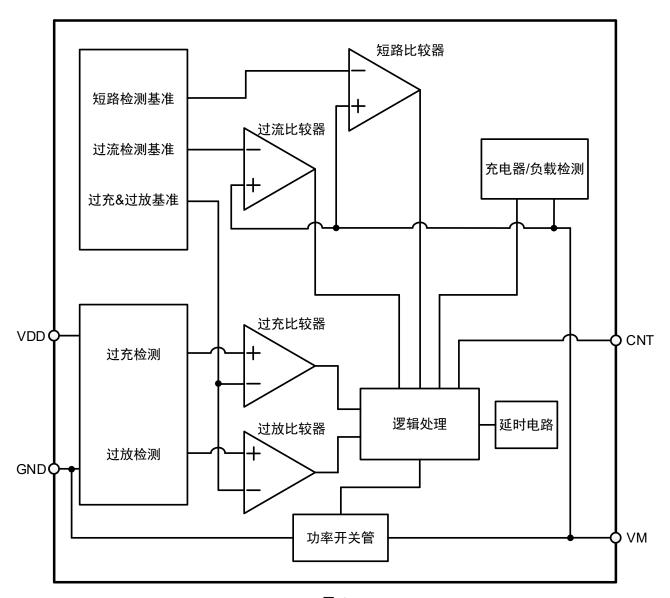


图 1

■ 引脚排列图

DFN1×1-4L

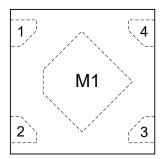
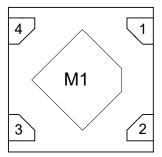
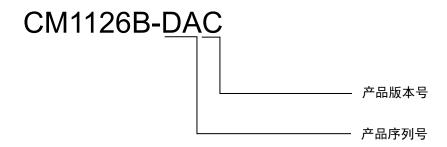


图 2 顶视图




图 3 底视图

引脚号	符号	描述
1	VDD	电源端
2	GND	电源接地端,与供电电源(电池)的负极相连
3	CNT	船运模式控制端子
4	VM	充放电电流检测端子,与充电器负极或负载连接
M1	NC	无连接,悬空

表 1

■ 命名规则

■ 印字说明

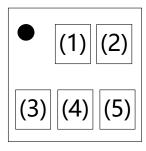


图 4

- (1)(2)(3): 产品代码 DAF
- (4)(5): 生产批次

■ 产品列表

1.检测电压表

产品名称	R _{DS(ON)}	过充电 保护电压 V _{oc}	过充电 解除电压 V _{OCR}	过放电 保护电压 V _{OD}	过放电 解除电压 V _{ODR}	放电过流 检测电流 I _{DI}	短路电流 检测电流 I _{SHORT}	充电过流 检测电流 Icı
CM1126B-DAC	65 mΩ	4.475 V	4.275 V	2.850 V	3.050 V	0.450 A	0.850 A	0.450 A

表 2

2.功能列表

产品名称	过充自恢复功能	休眠功能	休眠功能 向 0V 电池充电功能		放电过流状态的 解除电压
CM1126B-DAC	有	有	允许	断开负载	V_{RIOV}

表 3

3.延迟时间

产品名称	过充电保护延时 Toc	过放电保护延时 T _{OD}	放电过流延时 T _{DI}	充电过流延时 T _{Cl}	短路延时 T _{SHORT}
CM1126B-DAC	1000 ms	64 ms	10 ms	10 ms	250 µs

表 4

备注:需要上述规格以外的产品时,请与本公司业务部门联系。

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	绝对最大额定值	单位
VDD 和 GND 之间输入电压	V _{VDD}	-0.3 ~ 8.0	V
CNT 和 GND 之间输入电压	Vcnt	-0.3 ~ 8.0	V
VM 输入端子电压	V _{VM}	-6 ~ 10	V
工作温度范围	Topr	-40 ~ +85	°C
储存温度范围	Tstg	-55 ~ + 125	°C
ESD HBM 模式	-	4000	V

表 5

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C)

项目	符号	测试条件	最小值	典型值	最大值	单位
[功耗]						<u>L</u>
正常工作电流	I _{OPE}	VDD=3.6V, V _{VM} =0V	0.42	0.6	1	μA
休眠电流	I _{PDN}	VDD=1.5V, V _{VM} =1.5V	-	-	10	nA
[检测电压]						
过充电保护电压	Voc	VDD=3.5 → 4.8V	4.455	4.475	4.495	V
过充电解除电压	Vocr	VDD=4.8 → 3.5V	4.225	4.275	4.325	V
过放电保护电压	V _{OD}	VDD=3.5 → 2.0V	2.800	2.850	2.900	V
过放电解除电压	V _{ODR}	VDD=2.0 → 3.5V	2.950	3.050	3.150	V
放电过流解除电压	V _{RIOV}	-	VDD-1.4	VDD-1.0	VDD-0.6	V
[输入电压]						
CNT 端子电压 "H"	V _{CNTH}	VDD=3.6V	0.7	-	-	V
CNT 端子电压 "L"	VCNTL	VDD=3.6V	-	-	0.4	V
[输入高电平时间]						
进船运模式 CNT 高电平最小时间	T _{SM}	-	45	64	83	ms
[检测电流]						
放电过流检测	I _{DI}	VDD=3.6V	0.350	0.450	0.550	Α
短路电流检测	Ishort	VDD=3.6V	0.700	0.850	1.000	Α
充电过流检测	Icı	VDD=3.6V	0.350	0.450	0.550	Α
[延迟时间]						
过充电保护延时	Toc	VDD=3.5 → 4.8V	700	1000	1300	ms
过放电保护延时	Tod	VDD=3.5 → 2.0V	45	64	83	ms
放电过流保护延时	T _{DI}	VDD=3.6V	7	10	13	ms
充电过流保护延时	Tcı	VDD=3.6V	7	10	13	ms
短路保护延时	Tshort	VDD=3.6V	100	250	400	μs
退出船运模式延时	T _{SMR}	VDD=3.6V	0.6	1.0	1.4	ms
[内部电阻]						
VDD 端子-VM 端子间电阻	R _{VMD}	VDD=2V, V _{VM} =0V	750	1500	3000	kΩ
VM 端子-GND 端子间电阻	R _{VMS}	VDD=3.6V, V _{VM} =1.0V	10	20	30	kΩ
CNT 端子内部下拉电阻	R _{CNT}	-	1	2	3	МΩ
内部功率 N-MOSFET 阻抗	R _{DS(ON)}	VDD=3.6V, I _{VM} =0.1A	50	65	80	mΩ
[向 0V 电池充电的功能]						
充电器起始电压 (允许向 0V 电池充电)	V ₀ CH	允许向 0V 电池充电功能	0.0	1.5	2.0	V

表 6

■ 电气特性

(除特殊注明以外: Ta = -20°C ~ +60°C*1)

项目	符号	测试条件	最小值	典型值	最大值	单位	
[功耗]	L				<u> </u>		
正常工作电流	lope	VDD=3.6V, V _{VM} =0V	-	0.6	2.0	μA	
休眠电流	I _{PDN}	VDD=1.5V, V _{VM} =1.5V	-	-	50	nA	
[检测电压]							
过充电保护电压	Voc	VDD=3.5 → 4.8V	4.435	4.475	4.515	V	
过充电解除电压	Vocr	VDD=4.8 → 3.5V	4.175	4.275	4.375	V	
过放电保护电压	Vod	VDD=3.5 → 2.0V	2.750	2.850	2.950	V	
过放电解除电压	V _{ODR}	VDD=2.0 → 3.5V	2.850	3.050	3.250	V	
放电过流解除电压	V _{RIOV}	-	VDD-1.5	VDD-1.0	VDD-0.5	V	
[輸入电压]							
CNT 端子电压 "H"	V _{CNTH}	VDD=3.6V	0.8	-	-	V	
CNT 端子电压 "L"	VCNTL	VDD=3.6V	-	-	0.3	V	
[輸入高电平时间]							
进船运模式 CNT 高电平最小时间	T _{SM}	-	32	64	128	ms	
[检测电流]							
放电过流检测	I _{DI}	VDD=3.6V	0.300	0.450	0.600	Α	
充电过流检测	Icı	VDD=3.6V	0.300	0.450	0.600	Α	
[延迟时间]							
过充电保护延时	Toc	VDD=3.5 → 4.8V	500	1000	2000	ms	
过放电保护延时	T _{OD}	VDD=3.5 → 2.0V	32	64	128	ms	
放电过流保护延时	T _{DI}	VDD=3.6V	5	10	20	ms	
充电过流保护延时	T _{CI}	VDD=3.6V	5	10	20	ms	
短路保护延时	Tshort	VDD=3.6V	80	250	600	μs	
退出船运模式延时	T _{SMR}	VDD=3.6V	0.5	1.0	2.0	ms	
[内部电阻]							
VDD 端子-VM 端子间电阻	R _{VMD}	VDD=2V, V _{VM} =0V	500	1500	6000	kΩ	
VM 端子-GND 端子间电阻	Rvms	VDD=3.6V, V _{VM} =1.0V	7	20	40	kΩ	
CNT 端子内部下拉电阻	RCNT	-	0.5	2.0	4.0	МΩ	
内部功率 N-MOSFET 阻抗	R _{DS(ON)}	VDD=3.6V, I _{VM} =0.1A	30	65	100	mΩ	
[向 0V 电池充电的功能]	[向 0V 电池充电的功能]						
充电器起始电压 (允许向 0V 电池充电)	Voch	允许向 0V 电池充电功能	0.0	1.5	2.2	V	
	1					1	

表 7

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 功能说明

1. 正常工作状态

IC持续检测连接在VDD与GND端子之间电池电压,以及流过VM到GND端子之间的电流,来控制充电和放电。当电池电压在过放电保护电压(V_{OD})以上并在过充电保护电压(V_{OC})以下,且流过VM端子到GND的电流在充电过流保护阈值(I_{Cl})和放电过流保护阈值(I_{Dl})之间时,IC内部的MOSFET导通,这个状态称为"正常工作状态"。此状态下,可以正常充电和放电。

注意:初次连接电芯时,会有不能放电的可能性,此时需要连接充电器进行激活,充电器激活电压为4.5V~5V,激活时间不能低于10ms,激活后可恢复到正常工作状态。

2. 过充电状态

在正常条件下的充电过程中,当电池电压高于过充检测电压(Voc),并持续时间达到过充电压检测延迟时间(Toc)或更长,IC内部的MOSFET会关闭,并停止充电,这种情况称为过充电压保护。

过充电状态在如下两种情况下可以解除:

- 1) VM < VLD, 电池电压降低到过充电解除电压(Voca)以下时, 过充电状态就会释放。
- 2) $VM>V_{LD}$,当电池电压降低到过充电保护电压(V_{OC})以下时,过充电状态解除,恢复到正常工作状态,此功能称为负载检测功能。($V_{LD}=I_{DI}*R_{DS(ON)}$)

3. 过放电状态

电池电压降低到 V_{OD} 以下并持续了一段时间 T_{OD} ,IC 内部的 MOSFET 会关闭,并停止放电,这就称为过放电状态。当 IC 内部的 MOSFET 关闭后,VM 会被内部上拉电阻 R_{VMD} 上拉到 VDD,IC 功耗降低至 I_{PDN} ,这个状态称之为休眠状态。不 连接充电器,VM \geqslant 0.7V(典型值),即使 VDD 高于 V_{ODR} 也将会维持过放状态。

进入过放电状态后,要解除过放电状态,恢复正常状态,有以下几种情况:

- 1) 连接充电器,若 VM<0V(典型值),当电池电压高于过放电保护电压(Vop)时,过放电状态解除,恢复到正常工作状态,此功能称作充电器检测功能。
- 2) 连接充电器,若 0V(典型值) < VM < 0.7V(典型值),当电池电压高于过放电解除电压(VoDR)时,过放电状态解除,恢复到正常工作状态。

4. 放电过流状态

正常工作状态下的电池,IC通过VM端子电压持续检测放电电流。如果放电电流超过限流值(I_{DI}),并且这种状态持续的时间超过放电过流保护延迟时间(T_{DI}),IC内部的MOSFET会关闭,并停止放电,这个状态称为"放电过流状态"。如果放电电流超过短路保护电流值,并且这种状态持续的时间超过负载短路保护延迟时间(T_{SHORT}),IC内部的MOSFET会关闭,并停止放电,这个状态称为"负载短路状态"。

放电过流状态的解除条件 "断开负载" 及放电过流状态的解除电压 "VRIOV"

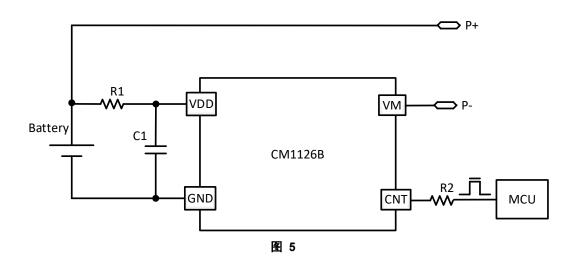
在放电过流状态下,芯片内部的VM端子与GND端子间可通过R_{VMS}电阻来连接。但是,在连接着负载的期间,VM端子电压由于连接着负载而变为VDD端子电压。若断开与负载的连接,则VM端子恢复至GND端子电压。当VM端子电压降低到V_{RIOV}以下时,即可解除放电过流状态。

5. 充电过流保护

正常工作状态下的电池,在充电过程中,如果流过 GND 到 VM 的电流值超过充电过流保护值(IcI),并且这种状态持续的时间超过充电过流保护延迟时间(TcI),则 IC 内部的 MOSFET 会关闭,并停止充电,这个状态称为充电过流状态。进入充电

过流检测状态后,如果断开充电器使流过 GND 到 VM 端子电流低于充电过流保护值(IcI)时,充电过流状态被解除,恢复到正常工作状态。

6. 向 0V 电池充电功能 (允许)


此功能用于对 0V 的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于向 0V 电池充电的充电器起始电压(V_{OCH})时,IC 内部充电控制 MOSFET 会导通,开始充电。当电池电压高于过放电保护电压(V_{OD})时,IC 进入正常工作状态。

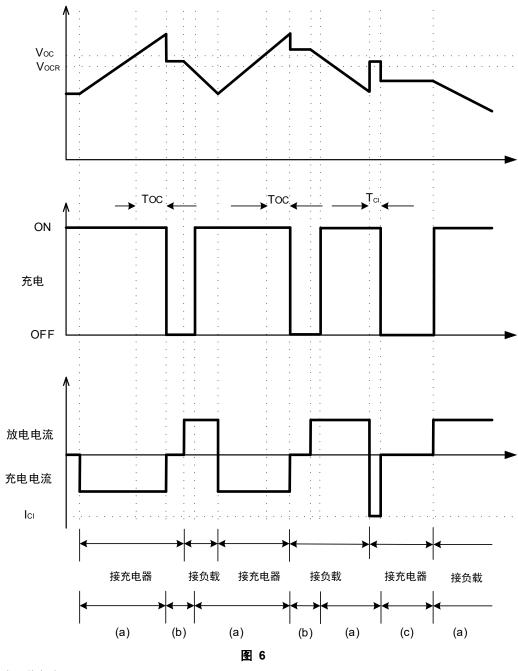
7. 船运模式功能

此功能用于解决当产品通过海运运输时,锂电池的电压在经过较长一段时间海运后可能会大幅度下降的问题。当需要进入船运模式时,由 MCU 向 IC CNT 端子输出高电平脉冲,当高电平时间超过进船运模式 CNT 高电平时间(T_{SM})时,芯片将会进入船运模式,该模式下 IC 功耗<10nA,连接充电器后经过退出船运模式延时(T_{SMR})后 IC 将会进入正常工作状态。

■ 典型应用原理图

器件标识	典型值	参数范围	单位
R1	1000	510 ~ 1500	Ω
R2	200	100 ~ 330	kΩ
C1	0.1	0.047 ~ 0.220	μF

表 8

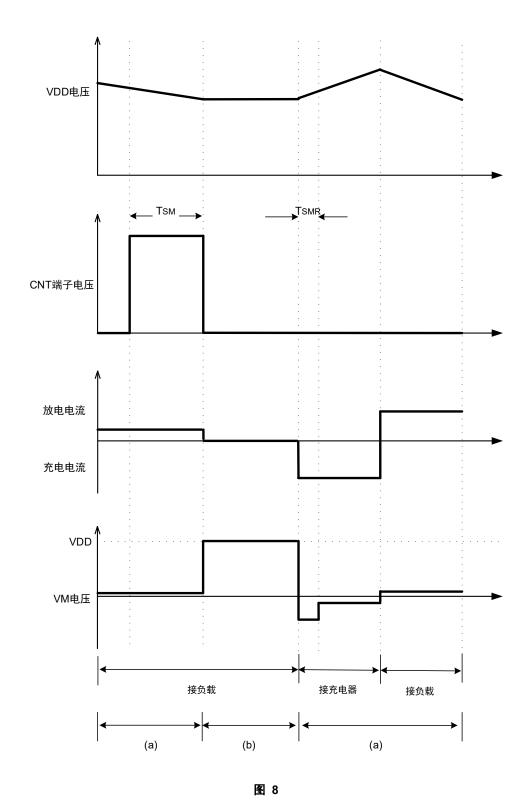

注意:

- 1. 上述参数有可能不经预告而作更改。
- 2. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

■ 时序图

1. 过充电保护、充电过流保护

- (a) 正常工作状态
- (b) 过充电状态
- (c) 充电过流状态


2. 过放电保护、放电过流保护

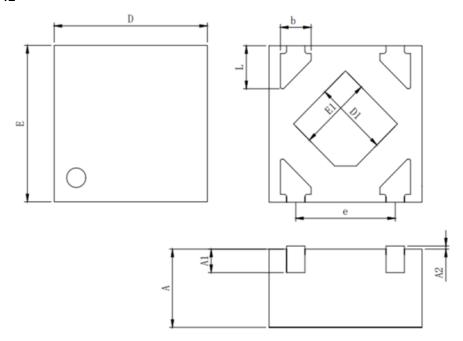
- (a) 正常工作状态
- (b) 过放电状态
- (c) 放电过流状态
- (d) 负载短路状态

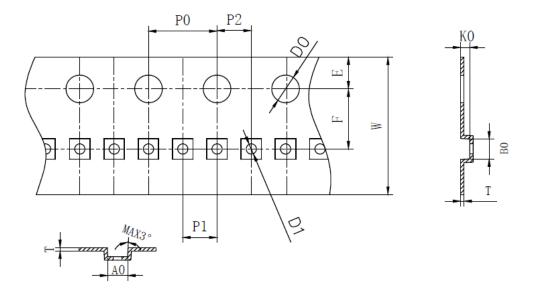
3. 进入船运模式、退出船运模式

- (a) 正常工作状态
- (b) 船运模式状态

■ 封装信息

DFN1.0×1.0-4L




图 9

NOTE: ALL DIMENSIONS IN MM							
Symbol	MIN	NOM	MAX				
D	0.95	1.00	1.05				
E	0.95	1.00	1.05				
D1	0.43	0.48	0.53				
E1	0.43	0.48	0.53				
L	0.23	0.28	0.33				
b	0.15	0.20	0.25				
е	0.65BSC						
Α	0.45	0.50	0.60				
A1	0.127REF						
A2	0.00 - 0.05						

表 9

■ 载带信息

SYMBOL	AO	ВО	КО	P0	P1	P2
SPEC	1. 15±0. 05	1. 15±0. 05	0.55±0.05	4.00±0.10	2.00±0.10	2.00±0.05
SYMBOL	T	E	F	D0	D1	W
SPEC	0.20±0.02	1.75±0.10	3.50±0.10	1.55±0.05	0. 50 ^{+0. 1} ₋₀	8. 00 ^{+0. 2} -0. 1

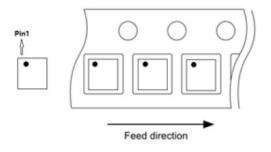
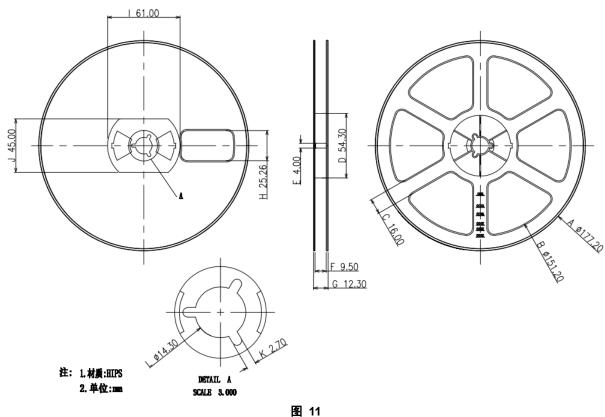



图 10

卷盘信息

■ 包装信息

卷盘	颗/盘	盘/盒	盒/箱
7"	10000	10	4

使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题,本公司对此概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗 不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公 司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可靠性电路中,例如:医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等,亦不得作为其部件使用。 本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自行 负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容,未经本公司许可,严禁用于其它目的的转载或复制。